METAL-CATALYZED ORGANIC PHOTOREACTIONS. ONE-STEP SYNTHESIS OF (\pm) -FRONTALIN BY THE TITANIUM(IV) CHLORIDE-CATALYZED PHOTOREACTION OF HEPTANE-2,6-DIONE

Tadashi SATO*, Shin-1chi YAMAGUCHI, and H1rokazu KANEKO Department of Applied Chemistry, Waseda University, Ookubo 3, Shinjuku-ku, Tokyo 160, Japan

Frontalin was synthesized from heptane-2,6-dione by the titanum(IV) chloride-catalyzed photoreaction.

Frontalin, a pheromone of southern pine beetle, <u>D. frontalis</u>, was first isolated by Kinzer, et al. in 1969, and the structure was determined as 1,5-dimethyl-6,8-dioxabicyclo[3,2,1]octane $\underline{4}$, by the synthesis of the racemate.¹ The absolute configuration was assigned as (S)-(-)-form by the stereoselective synthesis of the active forms by Mori,² Ohrui,³ Fraser-Reid,⁴ and Magnus.⁵ The synthesis of the racemate has been accomplished by Kinzer,¹ Mundy,⁶ D'Silva,⁷ and Mori.⁸

In the course of our studies on the metal-catalyzed photoreactions,⁹ we have observed a unique catalytic behavior of titanium(IV) chloride in the photoreaction of α , β -enones in methanol.¹⁰ As an extension of the reaction,

Table 1.

	St		tarting ketones		Yields (%) of products	
$1 \xrightarrow{0}_{\text{CH}, 0H} 2 \xrightarrow{hv}_{\text{CH}, 0H}$	T 1C1.	R ¹	R ²	<u>1</u>	2	
R ⁻ R ⁻ 8 ⁻ 3 3 3	4	сн ₃	с ₂ н ₅	54		
		с ₂ н ₅	с ₂ н ₅	55		
1	R ²	^{сн} з	^{n-C} 3 ^H 7	68		
HO CH ₂ OH R		СНЗ	(сн ₂) ₂ соон	56 ^a		
$x_{R^{1}} x_{R^{2}} +$	ı́×_	-(c	н ₂) ₄ -	35		
R	r R2	-(C	н ₂) ₅ -	76	21	
<u>1</u>	2	-(c	н ₂) ₆ -	35		
a. Isolable as γ -lactone.		$-ch(ch_2)_4$ -		42 ^b	26	
b. A mixture of Z- and E-forms. $(76 : 24)$		ĊH3				
c. A mixture of Z- a	nd E-forms. (69 : 31)	-(CH ₂)	2 ^{CH(CH} 2)2- t-Bu	48 ^c	19	

we recently found that the saturated ketones give 1,2-diols <u>1</u>, accompanied in some cases by ketals <u>2</u> as minor products, when irradiated in methanol with quartz-filtered light in the presence of titanium(IV) chloride.¹¹ The results are summarized in the Table 1. In the absence of titanium(IV) chloride, the reaction usually afforded a mixture of several products in small amounts. This reaction was now applied for the synthesis of (<u>±</u>)-frontalin.

A solution of heptane-2,6-dione $\underline{3}$ (1.755 g) and titanium(IV) chloride (0.75 ml) in methanol (150 ml) was irradiated in quartz vessel with highpressure mercury lamp (Ushio UM 452, 450 W) for 3 h. The clear blue solution

was diluted with water, and extracted with dichloromethane. Evaporation of the solvent left almost pure frontalin $\frac{4}{2}$ as a colorless oil. Distillation gave pure sample, 1.136 g (58.3%). Bp 90°/94 mmHg. The product indicated the spectroscopic data (NMR, IR, and MS) identical with those of (S)-(-)-frontalin.³ Since heptane-2,6-dione can be prepared easily from diketene and formalin,¹² the present reaction could be a facile method of the frontalin synthesis.

The authors are indebted to Dr. H. Ohrui, The Institute of Physical and Chemical Research, for presenting us the spectroscopic data of frontalin. References

- G. W. Kinzer, A. F. Fentiman, Jr., T. F. Page, Jr., and R. L. Foltz, Nature, <u>221</u>, 477 (1969).
- 2. K. Mori, Tetrahedron, <u>31</u>, 1381 (1975).
- 3. H. Ohrul and S. Emoto, Agr. Biol. Chem., 40, 2267 (1976).
- 4. D. R. Hicks and B. Fraser-Reid, J. C. S. Chem. Comm., <u>1976</u>, 869.
- 5. P. Magnus and G. Roy, J. C. S. Chem. Comm., <u>1978</u>, 297.
- B. P. Mundy, R. D. Otzenberger, and A. R. DeBernardis, J. Org. Chem., <u>36</u>, 2390 (1971).
- 7. T. D. J. D'Silva and D. W. Peck, J. Org. Chem., 37, 1828 (1972).
- 8. K. Mori, S. Kobayashi, and M. Matsui, Agr. Biol. Chem., <u>39</u>, 1889 (1975).
- 9. E. Murayama and T. Sato, Bull. Chem. Soc. Jpn, <u>51</u>, 3022 (1978).
- T. Sato, S. Yoshiie, T. Imamura, K. Hasegawa, M. Miyahara, S. Yamamura, and O. Ito, Bull. Chem. Soc. Jpn, <u>50</u>, 2714 (1977).
- H. Kaneko, S. Yamaguchi, and T. Sato, Abstr. No. 2M30, 37th National Meeting of the Chemical Society of Japan, Yokohama, April 1978.
- R. A. Micheli, Z. G. Hajos, N. Cohen, D. R. Parrish, L. A. Portland,
 W. Sciamanna, M. A. Scott, and P. A. Wehri, J. Org. Chem., <u>40</u>, 675 (1975).

(Received in Japan 13 February 1979)